On the occurrence of thermal explosion in a reacting gas: the effects of natural convection and consumption of reactant
نویسندگان
چکیده
Whether or not a chemical reaction in a fluid leads to an explosion is shown to depend on four timescales: that for the chemical reaction to heat up the fluid containing the reactants and products, for heat conduction out of the reactor, for natural convection in the fluid, and finally for chemical reaction. This approach is developed for an irreversible, n-th order chemical reaction, A → B occurring exothermically in a closed spherical vessel, whose wall is held at a fixed temperature. These four timescales are expressed in terms of the physical and chemical parameters of the system. A new three-dimensional regime diagram is proposed, in which the three effects inhibiting explosion, viz. the consumption of reactant, and heat removal both by thermal conduction and by natural convection, appear separately. Numerical simulations are performed for laminar natural convection occurring, so that the development of temperature, composition and velocity throughout a reacting gas is computed for increasing times. The results are compared with previous experimental measurements in the gas phase for the decomposition of azomethane. The criterion for an explosion is considered in some detail; it appears that these systems explode if and when the maximum dimensionless rise in temperature exceeds a value close to 5.
منابع مشابه
Effects of kinetic and transport phenomena on thermal explosion and oscillatory behaviour in a spherical reactor with mixed convection.
Thermal explosions are often influenced by the complex interaction between transport and reaction phenomena. In particular, reactant consumption can promote safer, non-explosive operation conditions of combustion systems. However, in liquids or gases, the presence of forced convection can affect the behaviour of a system, instigating oscillations in the temperature, reactant concentration and v...
متن کاملStructure and Properties of a Natural Celulosic Hollow Fiber
The interaction of thermal radiation with conduction and laminar natural convection in a vertical circular pin, situated at participating gas, is numerically investigated. An absorbing and emitting gas is considered, and treated to be a gray participating media. Under the idealizing of gray gas, the Rosselan4 approximation is employed to describe the radiative heat flux in the energy equation. ...
متن کاملCombined Radiation and Natural Convection in Participating Laminar Flow Over a Vertical Circular Pin
The interaction of thermal radiation with conduction and laminar natural convection in a vertical circular pin, situated at participating gas, is numerically investigated. An absorbing and emitting gas is considered, and treated to be a gray participating media. Under the idealizing of gray gas, the Rosselan4 approximation is employed to describe the radiative heat flux in the energy equation. ...
متن کاملNumerical Study of the Mass Transfer Effects on the Flow and Thermal Fields Structures under the Influence of Natural Convection
In this paper, a numerical study has been carried out for coupled mass, momentum and heat transfer in the field under effects of natural convection. For this purpose, the unsteady incompressible Navier-Stokes equations with the terms of the Buoyancy forces (due to temperature gradients), energy conservation and concentration (mass) transfer equations have been simultaneously solved using approp...
متن کاملInfluence of Tube Arrangement on the Thermal Performance of Indirect Water Bath Heaters
Natural convection heat transfer from a tube bundle in the indirect water bath heaters is investigated. A computer-code is used for the solution of the governing equations of mass, momentum and energy transfer based on the SIMPLE-C algorithm. Simulations are carried out for the gas pressure station heater of Kermanshah city with various tube bundle arrangements. In order to validate the numeric...
متن کامل